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The home environment plays a critical role in shaping daily routines that influence emotional wellbeing. While previous
research has leveraged mobile and wearable devices to track emotional wellbeing indicators, these approaches often suffer from
limited adherence and data gaps when users are not actively engaged. To address this, we further explore home IoT sensing
as a passive and unobtrusive modality for monitoring emotional wellbeing. We conducted a four-week user study (N=20),
collecting data from mobile devices, wearables, and home IoT sensors. Our quantitative analysis showed that incorporating
home IoT data better captured associations between domestic routines and emotional wellbeing than mobile and wearable
data alone. However, domestic activity patterns varied significantly across participants, highlighting the personalized nature
of domestic routines. To further investigate these differences, we developed an informatics tool for participants to visualize
and reflect on their behavioral data. Semi-structured interviews revealed that participants found home IoT data intuitive
and insightful in understanding their emotional wellbeing, leading to a positive shift in privacy concerns. Our findings
highlight home IoT sensing as a promising tool for tracking emotional wellbeing and provide design implications for future
sensor-enabled home healthcare services.
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1 Introduction
The domestic environment has long been recognized as an important setting for observing daily behaviors that
influence health and wellbeing [46]. In this context, home healthcare services, such as telehealth and remote
monitoring, have been continuously developed [51]. This is particularly important for individuals experiencing
depression or anxiety, as they often exhibit reduced physical activity and social engagement, leading to extended
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time spent at home [57, 59]. At the same time, the global increase in single-person households has further amplified
concerns about mental health and social isolation [112]. As more people live alone, the home has become not
only a private space but also a primary setting in which emotional wellbeing is shaped and experienced. These
trends underscore the growing need for mental wellbeing care that is embedded within the home.
To enable effective care in this setting, it is essential to continuously monitor users’ health and lifestyle in

situ. The home, where people naturally form routines and engage in daily activities [100], provides an ideal
context for capturing naturalistic behaviors to understand and improve user health status. Advances in ubiquitous
sensing technology have made it possible to monitor domestic behaviors through Internet of Things (IoT)
sensors [20, 34, 50]. For example, motion sensors or appliance-embedded IoT devices can be used to track
activities of daily living (ADLs) [23], facilitating support for both physical health (e.g., fall detection [114]) and
cognitive health (e.g., dementia [6]). Data collected in such sensor-enabled home environments, commonly
categorized as patient-generated health data (PGHD), offers rich behavioral insights that can inform personalized
care and timely interventions [19].

While sensor-enabled home environments have been explored as potential healthcare settings, most existing
efforts have primarily focused on cognitive and functional health in older adults [21]. These approaches often
remain centered on the diagnosis and treatment of diseases, rather than addressing the broader spectrum of
psychological and emotional wellbeing [68]. As awareness of mental health increases, there is a growing need to
move beyond reactive, illness-focused models and instead adopt proactive strategies that promote emotional
wellbeing in everyday life [71]. Emotional wellbeing, defined as presence of positive emotions and absence of
negative ones [25, 27], requires active management of common negative states such as depressed mood, anxiety,
and stress, which remain prevalent globally [42, 69]. Importantly, supporting emotional wellbeing should not
be limited to individuals with clinically diagnosed mental health conditions. Those with subclinical symptoms,
who may not meet formal diagnostic criteria but still face emotional difficulties [31, 83], also require meaningful
support. This shift highlights the importance of embedding emotional support into everyday routines, marking a
transition from medicalized interventions to more mundane self-care practices integrated into daily life [67].
The domestic environment offers a valuable opportunity to support the management of everyday emotional

wellbeing. According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) [8], emotional
wellbeing risks, such as depression, anxiety, and stress, are closely associated with behavioral factors, including
sleep and eating patterns [89]. Since these routines naturally unfold within the home, the domestic setting provides
an ideal context for the continuous and passive monitoring of behaviors that are tightly linked to emotional states.
Moreover, self-awareness of one’s emotional state is essential for effective emotional wellbeing management [82].
By leveraging home IoT sensing to monitor subconscious and repetitive domestic routines [10, 113], home-based
monitoring systems can provide objective, data-driven insights into how everyday behaviors relate to emotional
states. These insights can foster self-reflection, enabling individuals to identify behavioral patterns, make informed
lifestlye adjustments, and take proactive steps toward emotional wellbeing management [54]. These capabilities
underscore the potential of passive, IoT-enabled sensing technologies to facilitate personalized and preventive
mental healthcare in everyday contexts.
Despite its potential, existing studies on emotional wellbeing have primarily relied on mobile devices and

wearable technologies to track indicators such as step counts, heart rate, and GPS data [11, 43, 106]. However, such
data collection becomes limited when users are at home and not actively carrying or wearing these devices [24, 39].
In contrast, home IoT data serves as a complementary modality by enabling continuous monitoring of users’
naturalistic behaviors in the home environment without requiring device attachment or active user engagement.
This unobtrusive and seamless sensing approach minimizes user burden while providing a valuable opportunity
to analyze multifaceted lifestyle factors associated with everyday emotional wellbeing. Although home IoT data
has significant potential to understand emotional wellbeing, there is limited research investigating how such data
can be systematically leveraged to infer emotional states. Furthermore, user perceptions and privacy concerns
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around using home IoT data for emotional self-tracking and wellbeing management have yet to be thoroughly
examined.
With this background, we set the following research questions (RQs):
• RQ1: How is home IoT data associated with everyday emotional wellbeing?
• RQ2: What are users’ perceptions of behavioral patterns identified via home IoT data that are related to
everyday emotional wellbeing?

• RQ3: What are users’ privacy concerns regarding the collection and use of home IoT data for everyday
emotional wellbeing?

To address these questions, we conducted a four-week field study with 20 participants, collecting sensor data
from mobile devices, wearables, and home IoT sensors, along with self-reported measures of emotional wellbeing.
We first performed a quantitative analysis to examine the relationship between home IoT data and emotional
wellbeing. Our results indicated that incorporating home IoT data improved the ability to capture associations
with emotional wellbeing, compared to relying solely on mobile and wearable data. However, we also observed
substantial variability in domestic activity patterns across participants, highlighting the individualized nature of
home routines and their connection to emotional wellbeing.
To further investigate these individual differences, we examined how participants reflected on their home

IoT data in relation to emotional wellbeing. To support this reflection, we developed a personal informatics
tool that enabled users to explore the connections between their sensor data and emotional states. Through
semi-structured interviews, we found that most participants perceived home IoT data as intuitive and easy to
interpret and gained insights into their emotional wellbeing. Specifically, participants contextualized the sensor
data within their daily lives and integrated multiple data streams to better understand how their behavioral
routines related to emotional states. Moreover, participants reported a positive shift in their privacy concerns,
indicating increased comfort with the collection and use of home IoT data after interacting with the tool.
Taken together, the key contributions of this study are as follows.
• Our study broadens mental healthcare research by demonstrating the feasibility and challenges of using
home IoT data, complementing mobile and wearable sensing, to track emotional well-being, based on a
four-week in-the-wild study with 20 single-person households.

• Our findings reveal how users reflect on their emotional wellbeing through visualizations of domestic
activity data collected via home IoT sensors, and uncover nuanced privacy concerns emerging from in-home
emotional wellbeing tracking.

• This study offers insights derived from empirical analysis and design implications for sensor-enabled home
healthcare systems that support everyday emotional self-tracking.

2 Related Work

2.1 Tracking Home IoT Data for Emotional Wellbeing
Mental health is shaped by various behavioral and environmental factors that influence daily life [89, 104]. Studies
in lifestyle medicine and psychiatry have identified several key lifestyle factors such as sleep patterns, eating habits,
physical activity, social interaction, and environmental conditions as critical determinants of mental wellbeing [73].
Since these factors play a critical role in mental health, continuously tracking these factors can facilitate early
intervention and improve emotional wellbeing.

Recent studies have shown that mobile and wearable devices (e.g., smartwatches) facilitate self-tracking major
lifestyle factors [106–108]. For example, sleep disturbances, commonly experienced by individuals with depression
and anxiety, can be monitored using mobile and wearable devices that track sleep duration and patterns [72, 106].
Similarly, smartwatches can detect eating patterns by tracking wrist movements [64], although self-reports are
often required to address gaps or inaccuracies in automated detection [36, 96]. For physical activity, mobile and
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wearable devices collect GPS data [87, 113] and accelerometer data [3], offering insights into a user’s mental state.
Since reduced physical activity is a common symptom of depression, tracking movement patterns through these
devices can help identify changes in mental wellbeing [3, 87].

While sensor-based mental health research has primarily focused on outdoor and mobile contexts, many key
lifestyle factors influencing emotional wellbeing are rooted in habitual, everyday behaviors at home. Therefore, it
is important to consider domestic settings, where much of daily life and mental health-related activity occurs.
For individuals with health issues, tracking behaviors at home is particularly important as they tend to spend
more time indoors, reducing outdoor activities [59]. Naturally, other domestic behaviors (e.g., sleep, eating, and
indoor activities) accompanied by the increased time spent within the domestic environment can also serve
as an important indicator in assessing one’s emotional wellbeing. Additionally, exploring domestic settings
offers the opportunity to complement mobile and wearable data. For example, tracking domestic behaviors
such as sleep or eating solely with mobile or wearable devices can compromise data quality due to missing or
inaccurate data, as users do not always carry or wear mobile or wearable devices to track their states [24, 39].
Furthermore, environmental factors such as light, temperature, and humidity, which can influence mental
health [77, 91], are not easily captured by mobile or wearable devices. While mobile and wearable devices
can capture general physical activities like walking or running, they often fail to detect these finer-grained,
context-specific domestic behaviors. In contrast, sensing within domestic settings can reveal home-specific
activity patterns and environmental conditions, providing complementary insights into emotional wellbeing.

Therefore, home IoT data, which captures various behavioral and environmental factors in a domestic setting,
presents a promising opportunity to provide a more comprehensive view of emotional wellbeing. Existing studies
have widely used home IoT sensors to track various aspects of daily life, such as sleep, eating, and household
activities as summarized in Table 1. Although prior studies have demonstrated the utility of home IoT sensors
for monitoring daily activities, most research on sensor-driven health monitoring in domestic environments
has focused on clinical or aging populations, particularly for monitoring functional and cognitive decline [105].
This is largely driven by the increasing demand for aging-in-place technologies, where IoT sensors (e.g., motion
or door contact sensors) have been deployed in assisted living facilities to monitor the activities of daily living
(ADLs) of older adults with dementia or mild cognitive impairment [5, 29]. For example, the Dem@Home project
implemented a GUI system that tracked cooking activities, sleep patterns, and indoor locations using ambient
home sensors to assist both clinicians and patients with mild cognitive impairment (e.g., Alzheimer’s disease) [6].
Similarly, sensor-augmented devices attached to everyday household objects (e.g., phones, coffee machines,
pillboxes) were developed to track ADLs such as pill-taking tasks and phone use in older adults [53], with the
collected data presented graphically to help physicians monitor cognitive health.
Despite advances in home IoT sensing, its potential to support emotional wellbeing in everyday life remains

underexplored. This gap is particularly important given that subclinical mental health symptoms, such as low
mood, fatigue, or mild anxiety, affect a large proportion of the population and can significantly impair daily
functioning [26, 31]. Although these individuals do not meet diagnostic thresholds, they often report reduced
quality of life [83], and early interventions have been shown to reduce emotional distress and prevent symptom
escalation into clinical disorders [22]. Given the high prevalence and impact of subclinical symptoms, developing
supportive technologies tailored for this group is critical for promoting emotional wellbeing and addressing
unmet needs. Our work addresses this gap by focusing on how home IoT sensing can support emotional wellbeing
among subclinical populations.

2.2 Supporting Emotional Wellbeing Reflection with Personal Informatics
Managing users’ emotional wellbeing requires systems that not only track everyday behaviors but also help
users make sense of such data and reflect on their emotional states. Personal informatics (PI) systems provide a
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Table 1. Types of sensors for lifestyle monitoring in domestic environments, summarized from prior literature

Observation Sensor Type Data type Reference

Sleep Pressure-based sleep sensor Sleep duration [6]
Motion sensor [14]

Cooking/Eating Door contact sensor Kitchen appliances usages [29, 50, 53, 94, 111]
Plug sensors Refrigerator usages [6, 88]

Taking Medicine Door contact sensor Medicine repository [53, 81, 94]

Indoor Location Tracking
Motion sensor Indoor motion [6, 14, 20, 29, 32, 81, 94]
Door contact sensor Room door open/close [32]
Light sensor Light changes of the room [50]

House Chores Plug sensors Vacuum cleaner usages [88]
Door contact sensor Washing machine usages [111]

Entering and Leaving Door contact sensor Main door open/close [20, 94, 111]

Environmental Conditions

Temperature Temperature [20, 50, 88, 94]
Humidity sensor Humidity [50, 88]
Light sensor Light [20, 50, 88]
Noise sensor Noise [29]

framework by enabling both behavior tracking and informative feedback to support self-reflection [54]. With the
proliferation of ubiquitous sensing, a large volume of HCI studies on PI systems powered by mobile and wearable
sensing technologies have emerged [85]. As interest in mental health issues grows [75], PI system designs for
mental health increasingly focus on delivering collected data to users through data visualizations [60, 96]. For
example, LifelogExplorer [45] supports self-reflection by visualizing the relationship between stress and various
life aspects using wearable sensor data, such as skin conductance and accelerometer measurements, alongside
personal calendar data. Similarly, Health Mashups [11] and DreamCatcher [72] collect sensor data from mobile
and wearable devices to visualize user moods and daily activities, such as sleep and food intake, facilitating user
reflection. In addition, MindScope [43] and Emotical [36] utilize prediction models to assist users in reflecting on
their mental health. MindScope predicts users’ stress levels using behavioral data from smartphones, providing
intuitive explanations and prediction results. Emotical builds a mood prediction model using self-reported sleep
and social activity data, visualizing future moods to encourage behavior changes that regulate negative moods.
While current research highlights the potential of sensor-driven PI systems for emotional wellbeing, these

systems largely rely on data from mobile or wearable devices, which often fall short in capturing certain domestic
behaviors and environmental factors. As discussed earlier, many everyday activities that are closely tied to
emotional wellbeing such as sleep, eating primarily take place within the home, and environmental factors (e.g.,
light, temperature) are also challenging to monitor using mobile and wearable sensors alone. These limitations
highlight an opportunity to augment existing PI systems, and our work explores how incorporating home IoT
data can support emotional wellbeing reflection in domestic contexts, offering complementary perspectives
beyond mobile and wearable approaches.

2.3 Privacy Concerns in Home IoT Data Collection
Privacy concerns are critical in sensor-enabled environments or services that extensively leverage personal data.
Prior studies have emphasized the importance of understanding users’ privacy perceptions and concerns related
to sensor-based personal data collection [52, 84]. With the advancement of IoT technologies, researchers have
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Table 2. Overview of study phases and activities

Preliminary Study Main Study (N=20)
Preliminary Exploration Data Collection Setup & Execution After Data Collection
- Preliminary Survey (N=30) - Participant Recruitment - Visualization Tool Usage
- Literature Review - Sensor Setup & Data Collection - Interview & Post-Survey

increasingly studied user perception of privacy in domestic settings [17, 61]. For example, Choe et al. [17] found
that users are less willing to record and share private in-home activities such as cooking/eating and intimacy
behaviors, while Zheng et al. [115] revealed that users often overlook privacy risks from seemingly less sensitive
data collected by non-audio/visual devices. Similarly, Tabassum et al. [97] found that users tend to underestimate
privacy risks associated with smart home devices.
While these studies provide valuable insights into privacy concerns in smart home contexts, none have

specifically addressed users’ perceptions regarding the utilization of home IoT sensor data for self-tracking
emotional wellbeing. Given that mental health-related data is often perceived as one of the most sensitive types of
personal health information [33], it is important to understand how people perceive the collection and use of home
IoT data for emotional wellbeing tracking. This understanding is essential for informing the design of systems
that are not only effective in tracking emotional wellbeing but also aligned with users’ privacy expectations. Our
work contributes to this growing body of research by offering firsthand insights into users’ experiences of living
with a variety of IoT devices in their homes, specifically in the context of self-tracking emotional wellbeing.

3 Methods
Our study consisted of three stages: (1) an initial phase combining a preliminary survey with 30 participants and
a literature review to define data selection criteria; (2) four weeks in-the-wild data collection with 20 participants,
distinct from those in the survey; and (3) a post-hoc reflection phase involving the design of a visualization tool
based on the collected data, followed by user study using the tool. Table 2 presents the overall study phases.

3.1 Data Selection Criteria
By reviewing prior studies, we identified five behavioral and environmental factors related to emotional wellbeing:
sleep, eating, physical activity, social interaction, and environmental conditions [73, 89, 104]. To investigate how
these factors could be tracked in domestic settings, we examined sensing modalities from the literature and
summarized them in Table 1. Drawing from this prior work, we selected a subset of sensors that are particularly
suitable for capturing lifestyle factors likely to be associated with emotional wellbeing in everyday domestic
settings. This literature-based overview served as a reference point in designing our sensing setup, from which
we selected sensors that could feasibly be deployed to monitor the most relevant behavioral and environmental
factors. To further ground our sensor selection in real-world conditions, we conducted a pre-study survey with
30 individuals living in single-person households. Participants were recruited through an online university
community board, and all lived in private residences, explicitly excluding on-campus dormitories or shared
housing. This survey was approved by the institutional review board (IRB). Among the respondents, 29 were in
their 20s and 1 in their 30s; 9 were male and 21 female. The goal of the survey was to identify commonly owned
appliances that could serve as proxies for lifestyle factors related to emotional wellbeing (Appendix A, Table 6).

Sleep plays a crucial role in mental health, with sleep duration being a key diagnostic factor in the DSM-5 [8].
Mobile and wearable devices have been widely used to estimate sleep duration [72, 106, 107]. While smartphone-
based sleep detection has recently become feasible through sensor-based modeling [63], smartphones are not
originally designed for sleep tracking and thus infer sleep status indirectly from a combination of data such as
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accelerometer and screen usage, which may affect reliability. Wearables, though equipped with sleep tracking
features, require consistent user compliance [39]. Considering these limitations, we leverage a bed-mounted
pressure sensor that enables unobtrusive, passive, and continuous sleep monitoring.

Eating is another lifestyle factor directly associated with emotional wellbeing, and changes in appetite (either
increase or decrease) are part of the DSM-5 diagnostic criteria for depression [8]. However, monitoring eating
behavior remains a challenge due to the difficulty of automatically detecting food intake. Most studies rely on
self-reported meal frequency [64] or manual food intake logs [11]. In domestic settings, interactions with kitchen
appliances (e.g., fridge, microwave, coffee maker) have been used as a proxy for food-related routines [50, 53, 111].
In our study, rather than attempting to detect precise intake events, we focused on identifying food-related
routines, such as the frequency of appliance use, which may indirectly reflect changes in eating patterns relevant
to emotional wellbeing. To support this approach, we first surveyed 30 single-person households to identify
commonly used kitchen appliances. Over 90% of the participants reported owning microwaves and refrigerators.
Accordingly, we monitored their usage frequency as an approximation of food-related behavior patterns. While
appliance ownership alone does not confirm eating behavior, prior work suggests that usage patterns can serve
as reliable behavioral proxies in domestic settings [50].

Physical activity is typically monitored using step counts, GPS tracking, and accelerometer data [3, 55]. While
mobile and wearable devices effectively track outdoor activities, they are less suited for monitoring movement
within the home. Additionally, these devices rely on users consistently carrying or wearing them, which may not
always be the case at home, leading to gaps in domestic activity tracking. To capture physical activity in domestic
settings, prior studies have considered indoor movements, household chores, and entry/exit events as indicators
of activity levels [20, 111]. In our study, we leveraged home IoT sensors and wearable devices to monitor both
indoor and outdoor activities. Indoor activities were assessed through household chores and movement within
the home, while outdoor activities were inferred from entry/exit patterns and step counts. For tracking household
chores, we focused on the usage of vacuum cleaners and washing machines, as these were the most commonly
owned appliances based on our survey. By integrating home IoT data with traditional mobile and wearable
activity tracking, we aimed to provide a more comprehensive view of users’ daily movement patterns.

Social interaction has been assessed primarily through phone call logs, messaging frequency, and social media
activity using mobile devices [55, 113]. Similarly, we relied on smartphone data to monitor call duration and the
number of sent/received messages as indicators of social interaction patterns.

Environmental conditions such as light exposure, temperature, and humidity also significantly influence mental
health [77, 91]. To capture these conditions, we employed sensors that track indoor light levels, temperature, and
humidity. This data allows us to explore potential links between environmental factors and emotional wellbeing.
For the collection of mental health states data, we used the Patient Health Questionnaire-2 (PHQ-2) [58] and

Generalized Anxiety Disorder-2 (GAD-2) [49], which are abbreviated versions of the PHQ-9 [47] and GAD-7 [95],
to assess depression and anxiety, respectively. Additionally, we incorporated a questionnaire used in a prior
study [41] to collect self-report data on stress, valence, and arousal (Appendix A Table 3).

3.2 In-the-Wild Data Collection
In this section, we elaborate on the data collection methods and the overall design process of the personal
informatics tool which supports users in understanding their data. This study was approved by the university’s
institutional review board (IRB).

3.2.1 Participant Recruitment. We recruited 20 single-person households through online promotions at universi-
ties and local community websites. The average age of the participants was 24.79 (SD: 2.86), with 13 males and 7
females. Our recruitment criteria included individuals living in single-person households who owned essential
household appliances, including a bed, chair, microwave, refrigerator, washing machine, and vacuum cleaner.
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Fig. 1. System overview. Aqara sensors include 1) vibration sensor, 2) temperature & humidity sensor, 3) light sensor, 4) door
contact sensor, and 5) motion sensor.

We also recruited only individuals who, at the time of screening, reported spending at least five hours daily at
home, excluding sleep. This threshold was aligned with prior work using smart speaker–based ESM in domestic
settings [56], which adopted the same criterion to ensure meaningful in-home interaction opportunities with the
system. Participants were required to install a research-developed data logger application on their smartphones
(Android version 8.0 or higher).

Participants individually participated for 30 consecutive days within the period from May 8, 2023, to June 13,
2023. The start and end dates varied across participants. The main study participants were entirely independent
from those who participated in the earlier survey. Since our study focused on supporting emotional wellbeing in
everyday life rather than detecting severe mental health conditions, we did not pre-screen participants based on
clinically diagnosed depression. Instead, we aimed to capture a broad spectrum of emotional wellbeing states
and behavioral patterns, allowing us to examine variations in daily routines and their relationship to emotional
wellbeing in the general population, including individuals experiencing subclinical symptoms. Participants
covered a range of emotional wellbeing states, as indicated by varying PHQ-9 scores. Targeting this population
is important because subclinical symptoms such as low mood, fatigue, and mild anxiety are common and can
meaningfully impair daily functioning [26, 31]. By focusing on a subclinical population, we sought to investigate
how home IoT sensing could support emotional wellbeing in naturalistic, everyday contexts.

We chose to focus on single-person households for two reasons. First, their relevance to mental health issues
is increasingly recognized. Recent studies have shown a significant global rise in single-person households;
according to the United Nations, the proportion of single-person households worldwide increased from 23%
in 1985 to 28% in 2018, with projections reaching 35% by 2050 [102]. Furthermore, a recent meta-review found
that individuals living alone faced a higher risk of depression [112]. The second reason is related to the internal
validity of self-tracking at home. In single-person households, tracking behaviors is straightforward, as there
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Indoor Environment Sleep Mat Vacuum Machine

Washing Machine Refrigerator Microwave

Indoor Movement Chair Main Door

Fig. 2. Sensor installation for monitoring domestic activities

is no need for disambiguation between multiple occupants, ensuring cleaner and more reliable data collection.
Most participants lived in studio apartments, with three participants residing in one-bedroom apartments. While
living space could potentially influence daily behaviors, the majority of sensing devices used in our study were
attached to specific appliances or furniture rather than installed by room, which may have reduced the impact of
living space on data collection.

3.2.2 Data Collection Procedure. The user study was conducted for four weeks to collect mobile, wearable, and
home IoT sensor data. Before data collection, participants were informed of the study’s purpose and details of
data collection (e.g., sensors, devices, collected data types) at an online orientation. Following the orientation,
researchers visited the participants’ homes to install all necessary sensors and devices. Participants then completed
a pre-survey including the PHQ-9 (Patient Health Questionnaire-9), GAD-7 (General Anxiety Disorder-7), and
PSS (Perceived Stress Scale) to assess their baseline mental health status. Additionally, we administered a survey
to measure participants’ perceptions of privacy acceptability before the data collection period. They rated the
perceived acceptability of each data type on a 7-point Likert scale (1 = highly negative, 7 = highly positive), using
a questionnaire adapted from prior work [52].

IoT Data Collection: For home IoT data collection, we used commercially available sensors, including the Aqara
sensor suite (i.e., vibration, door, motion, and environmental sensors) and the Withings sleep tracking mat.
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Fig. 3. Examples of floor plans for sensor placements. (Left: One-bedroom apartment layout, Right: Studio apartment layout)

Aqara vibration sensors detected vibration, tilt, and drop events, which were used to track the usage of a chair,
refrigerator, vacuum cleaner, and washing machine. The door sensor recorded each instance of the front door
and microwave usage. The motion sensor was placed on a frequently used desk to track activity levels, while the
environmental sensor, mounted on the wall, monitored light, temperature, and humidity. Sleep duration was
measured using the Withings sleep tracking mat installed on participants’ beds. Every participant’s home was
equipped with a total of 10 sensors to comprehensively monitor their environment and behaviors, as shown in
Figure 2, with example sensor placements for each home type illustrated in Figure 3.

Mobile and Wearable Data Collection: We also collected mobile and wearable data. A research team-developed
smartphone application recorded call duration and the number of text messages sent and received. Participants
were provided with a Fitbit Inspire 2, which tracked step counts.

Experience Sampling Method (ESM) Data Collection: To collect self-reported emotional wellbeing data, we
implemented a context-aware ESM system, following approaches from prior studies [56, 109]. The system
consisted of a mobile phone, an environmental sensor, and a smart speaker (Google Nest Hub 2nd Gen). It
continuously monitored the home environment using the phone’s built-in sensors (ambient light, ambient noise,
camera-based human presence) and an external CO2 sensor. ESM prompts were delivered multiple times per
day through a multimodal interface supporting both touch and voice input. Prompts were triggered when an
opportune context was detected (e.g., reduced ambient noise or user presence near the device) or after a maximum
of 90 minutes since the previous prompt. To avoid excessive prompting, a minimum interval of 30 minutes was
enforced between prompts. When triggered, the mobile phone played a wake-up command (e.g., “Hey Google,
please run the survey program”) to activate the smart speaker. Upon recognizing the command, the speaker
launched the survey program and delivered the ESM prompt. Participants received at least six ESM prompts per
day within a user-defined 10-hour window (e.g., 10 AM–8 PM). Each prompt inquired about their emotional
state over the preceding 1–2 hours. This time interval was intentionally selected to align with the system’s
triggering frequency, typically prompting participants every 30 to 90 minutes. By asking about recent emotional
states within this interval, the system captured fine-grained affective dynamics throughout the day, closely tied
to participants’ everyday experiences. The ESM survey interface was adapted from validated designs in prior
work [56] and tailored to the current study context (Figure 4). The questions used in the survey were based on
validated mental health questionnaires, as listed in Table 3. Although the study primarily focuses on tracking
domestic routines, the ESM questions were designed to capture participants’ overall emotional state, including
those influenced by external contexts such as work-related stress. These emotional experiences, even when
originating outside the home, may manifest as changes in domestic behaviors (e.g., sleep patterns, movement, or

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 96. Publication date: September 2025.



Harnessing Home IoT for Self-Tracking Emotional Wellbeing • 96:11

Over the 1-2 hours before the survey, how often have you been

bothered by little interest or pleasure in doing things?

Survey Program

Please tap the button or speak your answer

Not at all Slightly 

disrupted

Frequently 

disrupted

Very frequently 

disrupted

0 1 2 3

Prev Next1/7

Fig. 4. Multimodal interface displayed on the smart speaker during the ESM task. Participants responded via touch or voice.

household activities). Accordingly, we examined how such emotional states relate to sensor-based representations
of daily routines.

Table 3. Mental health ESM questions

Category Questions Answers

Depression 1. Over the 1-2 hours before the survey, how often have you been
bothered by little interest or pleasure in doing things? Not at all (0) - Very frequently (3)

2. Over the 1-2 hours before the survey, how often have you been feeling
down, depressed, or hopeless?

Anxiety 3. Over the 1-2 hours before the survey, how often have you been feeling
nervous, anxious, or on edge? Not at all (0) - Very frequently (3)

4. Over the 1-2 hours before the survey, how often have you been unable
to stop or control worrying?

Stress 5. Over the 1-2 hours before the survey, what was your stress level? Not stressed at all (1) - Very stressed (5)
Emotional Valence 6. Over the 1-2 hours before the survey, how was your emotion? Very negative (1) - Very positive (5)
Emotional Arousal 7. Over the 1-2 hours before the survey, how was your emotion? Very calm (1) - Very excited (5)

3.3 Post-collection Data Reflection
3.3.1 Data Visualization Tool. After data collection, the next step was to present data in a way that users could
easily interpret and reflect on their daily behaviors. To achieve this, we considered several design possibilities
to make the collected data more comprehensible to individuals. Since visualization is a common approach for
quantifying self-tracking data [60, 72], we developed a visualization tool that supports the tracking sensor data
related to emotional wellbeing (Figure 5). The system was designed to make the data easy to understand and
navigate, allowing users to intuitively explore behavioral and emotional patterns. The tool supports two main
tasks: (i) exploring an overview of the collected data and (ii) supporting self-reflection on the relationships
between one’s domestic activities and emotional wellbeing.
For the first task, the system provides a descriptive overview of general trends in users’ daily activities and

emotional wellbeing. Users can select specific periods and data types via the left panel for focused exploration. To
visualize numerical trends, line graphs were used for environmental data to highlight changes over time, while
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bar graphs were applied to data like appliance usage and emotional states to emphasize individual values within
broader patterns [30, 93].
For the second task, the system offers a correlation view to illustrate relationships between sensor data and

emotional wellbeing. Correlation analysis, commonly used in personal informatics [11, 18], helps users intuitively
understand these connections. Pearson’s correlation coefficients were calculated using daily-averaged emotional
wellbeing risk scores (depression, anxiety, stress, emotional arousal, and valence) and aggregated daily sensor data.
The most highly correlated factors are displayed in descending order. To further assist users in interpreting the
correlation results, textual explanations were added alongside the correlation values. These explanations describe
in natural language how each sensor data feature is associated with emotional wellbeing factors. Because many
users often find it challenging to directly interpret numerical charts or raw correlation coefficients [11], providing
a natural language summary was intended to make the findings more accessible and easier to understand.
Note that the visualization tool is designed to inform users of strong correlations found by data analysis to

avoid information overload. Its goal is to assist users in self-reflecting on their emotional wellbeing and daily
domestic routines. It is ultimately up to the user to draw their own conclusions from data sensemaking regarding
behavior patterns related to their emotional wellbeing or sources of mental health issues, based on the insights
offered by the tool.

3.3.2 User Study on Data Reflection. After data collection ended, we analyzed each participant’s data and loaded
the results into the visualization tool to help participants engage with their own data and self-reflect on their
behavioral patterns and associations related to everyday emotional wellbeing. We explained to participants
that the purpose of the system is to visually represent behavioral and environmental factors that might be
associated with one’s emotional wellbeing. The visualization tool was deployed on a laptop provided by the
researchers. Participants individually explored their own data using the laptop in a lab setting. Each session lasted
approximately 45–60 minutes and was conducted in a one-on-one, in-person format, so that participants could
independently interact with the data without researcher interference. Participants explored the visualization tool
on their own, while researchers were present to provide technical support or clarification if needed. After data
exploration, we conducted an exit interview and survey. During the interviews, participants were asked about
1) how they explored the data using the provided tool, 2) how they reflected on the relationships between data
and emotional wellbeing 3) what insights they gained about their daily patterns and emotional wellbeing, and 4)
privacy concerns or other issues with the data utilization. Additionally, participants completed a post-survey
assessing their perceptions of privacy acceptability after the data collection period.

3.4 Data Analysis Methods
We used a mixed method to examine the relationship between home IoT data and emotional wellbeing. The
quantitative analysis assessed whether sensor data showed significant associations with risks to emotional
wellbeing, while the qualitative analysis explored how participants interpreted these relationships.

For quantitative analysis, we first conducted a multilevel logistic regression, classifying participants’ emotional
wellbeing states as higher risk (coded as 1) or lower risk (coded as 0). We adapted the PHQ-2 that consists of
two questions, assessing the frequency of “depressed mood” and “loss of interest” in the past few hours, each
ranging from 0 to 3 (not at all vs. very frequently) and the GAD-2 similarly measuring, “nervousness” and
“uncontrollable worrying.” For each scale, the score is calculated by adding each question’s rating, ranging from
0 to 6. For the PHQ-2 and GAD-2 scales, we followed prior clinical studies identifying a score of three points
as a validated screening cut-off for detecting individuals at risk of depression and anxiety [48, 74]. For stress,
emotional arousal, and emotional valence measures, which were scored on 1–5 Likert scale, we used the neutral
midpoint of three, as the threshold: scores of three or above were categorized as higher risk, and scores below
three as lower risk. For emotional valence, specifically, the coding was reversed, because higher valence scores
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(a) Description view

(b) Correlation view

Fig. 5. An overview of the data visualization tool

indicate more positive emotions, whereas lower scores are indicative of emotional wellbeing risks. We reported
marginal and conditional 𝑅2 to summarize the model fit [65]. Marginal 𝑅2 represents variance explained by fixed
factors, while the conditional 𝑅2 accounts for the variance explained by both fixed and random effects, including
individual differences. We also conducted a Likelihood Ratio Test (LRT) [110] to compare a full model (mobile,
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wearable, and home IoT data) with a reduced model (mobile and wearable only), assessing its added value beyond
mobile and wearable data. The LRT statistic, computed as twice the difference between the model log-likelihoods,
was evaluated against a chi-square distribution.

Next, we analyzed individual-level correlations to identify personalized associations between sensor data and
emotional wellbeing. We also investigated whether variability in sensor data (or domestic activities) could serve
as an indicator of emotional wellbeing, given prior evidence linking day-to-day behavior variability to emotional
wellbeing risks such as depression [66, 107]. We measured this variability using the standard deviation (SD) of
daily aggregated sensor data, a common metric for assessing behavioral variability [108]. For each IoT sensor
that detects interaction counts, we applied a quantile-based transformation to each feature to standardize the
scale while preserving rank order. We then computed the standard deviation of each quantile-ranked feature and
averaged these values across features to obtain a participant-level behavioral variability score. Environmental
sensors were excluded because of a lack of direct user interactions and their continuous nature of measurements.
Participants were divided into two groups based on the median value of their overall normalized variability
score in terms of interaction frequencies. High- and low-variability groups were assigned based on whether their
overall variability score was above or below the median, respectively. Then, Mann-Whitney U tests were used to
compare emotional wellbeing differences between the groups.
For qualitative analysis, we conducted semi-structured interviews to explore participants’ reflection process

on the relationships between domestic activities and everyday emotional wellbeing. We transcribed and analyzed
conversations during the interview by conducting thematic analysis [13]. Two researchers individually read
the interview transcripts and assigned thematic codes. Then, the whole research team iteratively reviewed and
refined the themes until a consensus was reached.
Finally, we examined whether participants’ privacy concerns changed by analyzing the survey data that

assesses users’ perception of privacy acceptability before and after the data collection period. We conducted a
Wilcoxon Signed-Rank Test to statistically analyze differences in acceptability ratings.

4 Results

4.1 RQ1. Exploring Home IoT Data Associated with Everyday Emotional Wellbeing
In this section, we report the results of our quantitative analysis on the relationship between home IoT data and
emotional wellbeing. First, we present statistical findings on whether home IoT data is significantly associated
with emotional wellbeing states. Next, we identify individual behavioral patterns by analyzing personalized
correlations between sensor data and emotional states. Finally, we examine whether the variability of domestic
activities captured via home IoT data can serve as a potential indicator for detecting emotional wellbeing.

4.1.1 Association Between Home IoT Data and Emotional Wellbeing. To analyze the relationship between mobile,
wearable, and home IoT data and participants’ emotional wellbeing, we conducted a multilevel logistic regression.
Participants’ daily emotional wellbeing risk scores were categorized into two groups (e.g., depressed vs. non-
depressed), serving as the dependent variable. Data from mobile, wearable, and home IoT sensors (i.e., fixed
effects) and participants (i.e., random effects) were set as independent variables. Mobile and wearable data were
used as the baseline because they have been widely adopted as standard data sources in emotional wellbeing
research [11, 43, 106]. We first established this baseline to evaluate the additional value of incorporating home IoT
data. We then examined how home IoT data influences emotional wellbeing compared to mobile and wearable
data using a Likelihood Ratio Test (LRT) [110]. The results are shown in Table 4. Block 1 includes only mobile
and wearable features as predictors, serving as the baseline. Block 2 incorporates additional home IoT features.
The 𝛽 coefficients represent the size and direction of the relationship between each sensor-derived feature and
the emotional wellbeing risk scores. Positive coefficients indicate that an increase in the feature is associated with
higher scores on the corresponding wellbeing measure, while negative coefficients indicate an association with
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lower scores. Notably, higher scores on depression, anxiety, and stress measures reflect greater emotional risk,
whereas higher valence scores reflect more positive emotional states. The likelihood ratio test (LRT) assesses
whether adding home IoT data significantly improves model fit compared to the baseline model. Empty beta (𝛽)
values in the first block indicate variables that were removed during the modeling process. A significant LRT
result suggests that the more complex model provides a significantly better fit to the observed data. Our results
indicate that adding home IoT data significantly improved the model fit for depression (𝜒2 = 36.01, 𝑝 < 0.001),
anxiety (𝜒2 = 38.49, 𝑝 < 0.001), and stress (𝜒2 = 23.68, 𝑝 = 0.014). However, for valence and arousal, the inclusion
of home IoT data did not show significant improvements.

To further explore which specific home IoT features were closely related to emotional wellbeing, we examined
the feature-level coefficients from the regression models. Notably, reduced sleep duration showed significant
associations with depression, anxiety, and stress, and increased sleep duration was linked to more positive
emotional valence. Higher indoor temperatures were associated with elevated depression and anxiety levels.
Additionally, certain behavioral indicators, such as increased washing machine usage (related to depression and
arousal) and frequent main door open-close events (related to stress), emerged as significant predictors. Full
statistical details, estimated coefficients, standard errors, and p-values, are provided in Appendix B Table 8–12.

Table 4. Results of multilevel logistic regression analysis predicting emotional wellbeing outcomes (Depression, Anxiety,
Stress, Emotional Valence, Emotional Arousal) based on mobile, wearable, and home IoT data. Block 1 includes mobile and
wearable data; Block 2 adds home IoT data. Coefficients (𝛽) describe the size and direction of the relationship between
a predictor and the response variable. Likelihood ratio test (LRT) results compare model fit between Block 1 and Block 2
(*p<0.05, **p<0.01, ***p<0.001).

Depression Anxiety Stress Emotional Valence Emotional Arousal

Independent Variables Block 1 Block 2 Block 1 Block 2 Block 1 Block 2 Block 1 Block 2 Block 1 Block 2
𝛽 𝛽 𝛽 𝛽 𝛽 𝛽 𝛽 𝛽 𝛽 𝛽

Mobile and Wearable Data
Call 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Message 0.05 0.01 0.03 0.01 0.08* 0.08* 0.05 0.05 0.04 0.02
Step 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Home IoT Data

Brightness -0.01 0.00 0.00 0.01 0.00
Tempearture 0.77*** 0.74*** 0.23 -0.16 -0.19
Humidity -0.23 -0.23 -0.17 0.26 -0.08
Sleep -0.21** -0.33*** -0.12* 0.11* -0.03
Cleaner 0.08 0.07 0.02 -0.05 -0.02
Washer 0.22* 0.03 0.09 0.04 0.17**
Fridge 0.02 0.07 -0.04 0.01 -0.03
Microwave -0.06 -0.01 0.00 -0.08 -0.02
Indoor Movemnt 0.00 0.00 0.00 0.00 0.00
Chair -0.01 0.00 0.00 0.00 0.00
Door 0.01 -0.10 0.10** -0.01 0.02

Marginal 𝑅2 0.02 0.43 0.00 0.36 0.05 0.15 0.01 0.11 0.01 0.08
Conditional 𝑅2 0.56 0.68 0.53 0.65 0.41 0.55 0.53 0.57 0.51 0.58
Likelihood Test for Model Comparison
Log Likelihood -113.83 -95.83 -113.63 -94.39 -217.81 -205.97 -204.12 -196.28 -210.65 -202.25
𝜒2 36.01*** 38.49*** 23.68* 15.67 16.79

4.1.2 Individual Differences in the Association Between Home IoT Data and EmotionalWellbeing. From the previous
analysis, we found that accounting for individual differences in home IoT data is important in explaining emotional
wellbeing. To consider personal differences, for each participant, we calculated correlation coefficients between
home IoT data and overall emotional wellbeing risk scores of each participant. These correlations were computed
by aggregating daily self-reported scores for three key mental health indicators, i.e., depression, anxiety, and
stress, which were collected through ESM surveys. Overall emotional wellbeing risk scores were derived from
these three sub-dimensions, as is commonly done in psychometric scales, where individual dimension scores are
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Fig. 6. The correlation heatmap of users (X-axis, user ID) and sensor data (Y-axis) and for emotional wellbeing risk scores

aggregated to generate an overall score. As illustrated in Figure 6, domestic behavioral patterns (Y-axes) varied
among individuals (X-axes) based on their emotional wellbeing risk scores. For instance, P16 exhibited decreased
refrigerator usage when experiencing high emotional wellbeing risks (𝑟 = -0.61), while P17 showed increased
refrigerator usage under similar conditions (𝑟 = 0.43).

Furthermore, the domestic activities associated with emotional wellbeing varied significantly among individuals.
While not statistically significant for all participants, certain data types showed strong correlations with emotional
wellbeing for specific individuals. For example, P9 showed a high correlation between microwave usage and
overall emotional wellbeing risk (𝑟 = 0.5), whereas for P4, chair movements (𝑟 = 0.55) and indoor movement
counts (𝑟 = 0.63) showed stronger associations. To illustrate these patterns, we included a user profile table
summarizing the top three correlations between behavioral patterns and emotional wellbeing risk (Figure 7).
This figure includes user demographics, such as depression, anxiety, and stress levels from pre-surveys.

4.1.3 Home IoT Data Variability and Emotional Wellbeing. As highlighted in the previous section, individuals
exhibit distinct behavioral patterns in relation to their emotional wellbeing states. Despite these variations, we
aimed to investigate whether any common pattern could still be identified by examining behavioral variability.
Previous studies have also underscored that day-to-day variability in behaviors is closely associated with mental
health symptoms [66, 107]. For instance, increased variability in activities such as eating and sleeping may
indicate an irregular lifestyle, potentially contributing to poorer mental health outcomes [80]. This aligns with the
diagnostic framework outlined in the DSM-5 [8], which emphasizes changes in major behaviors (e.g., sleep, eating)
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UID Gender Age PHQ9 GAD7 PSS Top 1 Top 2 Top 3

User 01 M 25 17 11 25 TEMP (-0.6) MVT (+0.39) BRT (-0.25)

User 02 M 25 10 6 15 Sleep (-0.53) Fridge (+0.34) HUM (-0.26)

User 03 M 24 12 7 17 MVT (-0.36) Sleep (-0.25) Fridge (+0.17)

User 04 M 26 7 5 18 MVT (+0.63) Chair (+0.55) TEMP (-0.41)      

User 05 M 24 10 2 12 Chair (-0.22) Cleaner (-0.18) HUM (-0.12)

User 06 M 26 15 1 25 Fridge (-0.71) Washer (+0.56) MW (-0.41)

User 07 F 25 11 6 30 Chair (-0.54) Door (-0.4) MVT (-0.39)

User 08 M 26 7 7 15 Sleep (-0.36) TEMP (-0.32) Chair (+0.3)

User 09 M 30 11 10 26 BRT (+0.53) MW (+0.5) Cleaner (+0.48)

User 10 M 24 4 4 16 TEMP (+0.36) Cleaner (+0.28) Chair (+0.16)

User 11 F 20 7 5 23 HUM (+0.51) Sleep (-0.42) TEMP (+0.35)

User 12 M 25 3 0 15 BRT (-0.37) Washer (-0.27) TEMP (+0.26)

User 13 F 28 16 13 28 TEMP (+0.49) HUM (-0.47) MVT (-0.26)

User 14 F 23 3 4 13 Door (+0.38) HUM (+0.29) Cleaner (-0.25)

User 15 M 24 0 0 5 MVT (+0.46) Chair (+0.29) TEMP (-0.22)

User 16 F 26 19 15 26 Fridge (-0.61) TEMP (+0.6) Door (-0.53)

User 17 M 23 10 7 11 TEMP (+0.67) Fridge (+0.43) Chair (+0.37)

User 18 F 18 17 14 27 TEMP (-0.45) MW (-0.36) HUM (-0.27)

User 19 F 25 0 0 4 Chair (+0.35) MW (+0.35) Sleep (+0.19)

User 20 M 29 7 1 16 TEMP (+0.35) BRT (-0.22) Door (+0.19)

Fig. 7. User demographics and top three dominant features associated with emotional wellbeing risks (TEMP: Temperature,
HUM: Humidity, MVT: Movement, BRT: Brightness, MW: Microwave)

as critical indicators of depression and anxiety symptoms. Based on this rationale, we examined the day-to-day
variability of domestic activities and their relationships with emotional wellbeing. While such variability might
not fully capture lifestyle irregularities, as it does not take into account factors such as different personal contexts
or specific times of day, it can still serve as a useful proxy for estimating the overall consistency or inconsistency
of lifestyle patterns. To calculate day-to-day variability, we aggregated the standard deviations of home IoT sensor
data for each participant; here, we only considered IoT sensors that detect “interaction counts,” and environmental
data were excluded due to a lack of direct user interactions and the continuous nature of measurements.
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Fig. 8. Comparison of depression, anxiety, and stress scores between low and high variability groups

Based on this metric, participants were divided into two groups: the top 50% with higher domestic activity
variability were categorized as the “High Variability Group,” and the bottom 50% with lower variability were
categorized as the “Low Variability Group.” Subsequently, we compared the emotional wellbeing risk scores of
the two groups (Figure 8). As the normality test indicated that neither group followed a normal distribution, we
conducted a Mann-Whitney U Test for statistical analysis. Although the emotional wellbeing risk scores were
relatively low in both groups, as the study was conducted with a general population rather than individuals
diagnosed with severe mental illness, the results revealed that the high variability group had significantly higher
scores for depression, anxiety, and stress. These findings suggest that the variability in home IoT data itself could
serve as an important indicator of emotional wellbeing.
To delve deeper into group-specific behavioral patterns, we examined the correlations between home IoT

features and emotional wellbeing risk scores across two groups (Figure 9). The red lines in the boxplot indicate
the mean values of the emotional wellbeing correlation with the features for each group. Notably, sleep showed a
consistent negative correlation with emotional wellbeing in both groups. This trend aligns with our previous
observations, suggesting that poorer mental health tends to be associated with shorter duration of sleep. Other
features, such as washer and cleaner usage, showed more discernible group differences, with the high variability
group exhibiting positive correlations with emotional wellbeing risk, and the low variability group exhibiting
weaker or negative correlations. These findings suggest that the relationship between behavioral patterns and
emotional wellbeing may vary depending on domestic behavioral variability.

While these personalized patterns highlight the potential of home IoT data in reflecting emotional wellbeing,
interpreting the direction and relevance of these correlations remains challenging without contextual under-
standing. Thus, to better distinguish between meaningful and spurious associations, we conducted follow-up
interviews with participants, as described in the following section.
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Fig. 9. Correlation of home IoT sensor data with emotional wellbeing in low and high variability groups

4.2 RQ2. User Perceptions of Behavioral Indicators for Emotional Wellbeing Self-Reflection
We report our findings on participants’ overall self-reflection patterns, focusing on the patterns of initial data
exploration, the ways they made sense of data in relation to their emotional wellbeing, and the challenges they
faced during the interpretation process.

4.2.1 Initial Data Exploration. When exploring the data, most participants initially focused on data types they
were already familiar with, particularly those known to be associated with emotional wellbeing, such as sleep. P3
noted, “I already know that sleep affects my mood and mental health, so I took a look at it first.” Some participants
reported that they focused more on days when the frequency of event occurrences was higher or lower than on
other days. For example, P7 said, “I originally thought I used a vacuum machine almost every other day, but the
data shows I didn’t clean for quite a long time. This was the first thing that caught my eye.” while P2 explained that
“I first looked at the days when my mental health risk scores such as depression or stress were high, and then checked
which home data might be related.”
Participants also replied that the process of understanding their data with the system was straightforward,

and the graphs presented the information clearly. P8 said, “Since the data itself was meaningful, like the number
of times I opened the fridge, I didn’t feel any difficulty in understanding it.” P17 also mentioned, “The graphs in
the system were quite simple because they showed the data on a daily level. It was intuitive to know how I lived
for a month and what my mental health state was like.” However, as shown later, there were also challenges in
interpreting certain data types across different individuals.

4.2.2 Patterns in Understanding Emotional Wellbeing Through Home IoT Data. Although statistically significant
correlations were limited, many participants reflected during follow-up interviews on the connection between
their home IoT data and their emotional wellbeing. Among various daily domestic activities, kitchen appliance
usage (e.g., fridge use) was frequently mentioned by participants as an important factor influencing their emotional
wellbeing. However, the patterns varied depending on individual behavioral traits. For instance, P17 explained
his stress-related routine in association with his behavioral traits. He noted, “I’ve always known that I enjoy
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eating. There’s just something about treating myself with tasty food that lifts my spirits. However, I’ve noticed that
on days when I’m particularly stressed, I tend to use kitchen appliances more often. It makes me think that perhaps
I subconsciously eat more to improve my mood.” Meanwhile, P16 noted that her refrigerator usage decreased
when she was depressed. She reported, “On June 4th, I felt particularly depressed. I noticed that my sleep duration
significantly increased while my refrigerator use drastically decreased. I wasn’t cooking at all and spent the entire
day in bed. I barely moved around and didn’t even drink water because I wasn’t using the refrigerator. Just lying
there, ordering takeout, it’s no surprise I felt depressed.”

Participants also reflected on specific past contexts to better interpret the patterns observed in their home IoT
data. For example, they reflected on their sleep duration during exam periods to understand its correlation with
emotional wellbeing. P3 commented, “When I’m really stressed, my sleep time tends to decrease. I stayed up all
night studying during exams, which added more stress. Not sleeping enough made me even more stressed, and it
became a vicious cycle. Plus, during those exam times, I was also snoozing at my desk rather than in my bed. That’s
probably why my sleep tracking isn’t quite catching everything.”
Moreover, some participants integrated insights from multiple types of home IoT data to deepen their un-

derstanding of their emotional wellbeing. They leveraged additional contextual cues from diverse data sources,
particularly when routines inferred from single sensor data were perceived as inaccurate or incomplete. For
example, P13 stated, “I think the whole combination of these home sensor data reveals a lot about who I am. I easily
get sensitive and stressed when things around me are distracting. To keep myself from hitting rock bottom, I try to
maintain a clean environment. Seeing even a single hair on the floor can bring me down, so I vacuum daily–sometimes
even every hour. I change my bedsheets and do laundry every week. Since I was keeping up with these chores, I didn’t
notice any major spikes in stress or depression. Looking back, maybe I felt better because of my routines, but this
data also makes me wonder if I might have OCD! (laughs).” Similarly, P19 initially questioned the increase in
refrigerator usage captured in her data, which did not immediately align with her understanding of how she
typically responded to stress. However, after reviewing additional data on her reduced outings, she recalled how
exam pressures had led to significant behavioral changes. She reflected, “I’m not the kind of person who eats when
I’m stressed. I’m very outgoing and love spending time outside doing stuff like seeing friends. I don’t usually eat at
home. But like I said earlier, I was depressed for some time. I think it was because of the exam and other pressures.
During that time, I spent most of my time at home. See the chair movement? I was stressed, but I had to study. . .
Interesting. . . that explains a lot.”

4.2.3 Challenges in Understanding Home IoT Data for Emotional Wellbeing. While participants generally accepted
the results from the system showing the associations between IoT data and emotional wellbeing, some questioned
whether certain data types were reliable indicators. This is because they sometimes struggled to establish a clear
semantic link between activities tracked by sensors and their emotional wellbeing states.
Some participants raised concerns that activities tracked via sensors could be interpreted in various ways,

making it difficult to assess their relevance as behavioral markers of emotional wellbeing. For example, P4 said,
“Looking at my stress and microwave usage, I assume it’s usually meant to infer eating or cooking. But I often
open the microwave just to clean it, and it’s still counted as usage, even though it wasn’t actually used for cooking.”
Additionally, P6 noted how his stress-coping strategies influenced the interpretation of certain data, emphasizing
that interrelated factors might come into play. He said, “The system shows that my washing machine usage is
higher when I’m stressed, but that’s because I tend to work out when I’m feeling stressed. After exercising, I do laundry,
so this pattern shows up. It’s hard to say that the washing machine usage is directly related to my stress–it’s more
about the workout routine that follows stress.”
Moreover, participants seemed to lack a clear mental model for understanding how specific behaviors were

linked to their emotional wellbeing. For example, P10 mentioned, “The system says I go out more often when I’m
depressed based on the main door data. However, it was hard to fully trust the correlation between going out and
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Table 5. Pre-post acceptability of each sensor data collection (1: Highly Negative – 7: Highly Positive). Statistically significant
results are reported as **<0.01.

Data Type Pre-acceptability Post-acceptability
𝑝 Effect Size (𝑟 )Median (IQR) Median (IQR)

Indoor Environment 6.0 (5.00 – 6.00) 6.0 (4.00 – 7.00) 0.440 0.173
Sleep** 5.0 (4.75 – 6.00) 6.0 (5.00 – 7.00) 0.006 0.609
Vacumm Clenaer 5.0 (5.00 – 7.00) 6.0 (4.75 – 7.00) 0.416 0.182
Washing Machine 5.0 (5.00 – 6.25) 6.0 (4.75 – 7.00) 0.429 0.177
Refrigerator 5.0 (4.00 – 7.00) 5.0 (5.00 – 7.00) 0.516 0.145
Microwave 5.0 (5.00 – 6.25) 5.0 (5.00 – 6.25) 1.000 0.000
Indoor Movement** 4.0 (3.00 – 5.00) 5.5 (4.00 – 6.00) 0.006 0.612
Chair 5.0 (4.00 – 6.00) 5.0 (4.00 – 6.25) 0.428 -0.145
Main Door 5.5 (4.00 – 6.00) 6.0 (4.75 – 7.00) 0.053 0.433
Mobile 4.5 (4.00 – 6.00) 5.0 (4.00 – 6.25) 0.051 0.437
Wearable 4.0 (1.00 – 5.25) 5.0 (4.00 – 6.00) 0.176 -0.311

feeling depressed. The experiment was during the exam period when I frequently visited the school library, so it was
confusing to interpret the data on going out. It seemed like I was just rushing out because I had to, not really because I
wanted to.” Some participants also found it difficult to understand how environmental factors could be practically
relevant. For example, P14 noted, “Knowing that higher humidity is associated with my stress is interesting, but I’m
not sure what I’m supposed to do with that information. Am I supposed to dehumidify my house?”

4.3 RQ3. Privacy Considerations of Home IoT Data for Self-Tracking Emotional Wellbeing
To examine how actual in-the-wild home IoT data collection influences participants’ perception of privacy, we
statistically compared pre- and post-study acceptability scores for different data types. Participants rated the
perceived acceptability of each data type on a 7-point Likert scale. Since the assumption of normality was violated,
we employed the Wilcoxon Signed-Rank Test for analysis, as summarized in Table 5.

Overall, participants showed higher levels of acceptability for home IoT data types (e.g., appliance usage,
environmental, and movement data) than for mobile and wearable data. In their responses, several participants
noted that Home IoT data felt less revealing of personal identity than mobile or wearable data. As P3 noted,
“What my phone records felt really personal. It was like they reflected who I am. But something like how often I open
the fridge? Even if someone saw that, it wouldn’t really say anything about me.”
While several home IoT data types, such as appliance usage and environmental data, showed relatively high

baseline acceptability and remained stable, we observed statistically significant increases in acceptability for
sleep data (𝑝 < .01) and indoor movement data (𝑝 < .01). Participants explained that, in the case of indoor
movement data, they were initially concerned about how precisely their location would be tracked. However,
after interacting with the system and seeing the actual data, which simply indicated whether movement occurred,
their concerns were reduced. For example, P10 commented, “I was pretty worried about recording my indoor motion
at first because it felt like I was being watched in my private space, which didn’t feel right. However, after seeing the
data, I was not worried anymore because it only showed whether I moved or not.”

For sleep data, participants described a shift in their attitude after recognizing its relevance to their emotional
wellbeing. Participants pointed out that viewing the sleep data helped them recognize patterns related to their
emotional wellbeing, which made them feel more comfortable with its collection. P8 shared, “At first, I was
skeptical about the need to collect my sleep data. I thought, ‘why is this even necessary?’ But after seeing the data, I
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realized that my sleep patterns were directly linked to my mental health, which helped me view the collection of sleep
data as a valuable tool for understanding and improving my wellbeing. Realizing its benefits shifted my focus from
privacy concerns to how it could support my health.”

5 Discussion
Our study explored the feasibility of modeling emotional wellbeing by tracking domestic activities with home IoT
data, which has traditionally been used to evaluate physical and cognitive health in older adults [21, 53, 105]. By
analyzing a dataset from the four-week field study with 20 single-person households, we identified key domestic
activity predictors, including their variability, on emotional wellbeing and further showed that interpersonal
variations were quite prevalent. We found patterns and challenges of sensemaking domestic activity data for
emotional wellbeing. We also observed that sensor-based data collection was positively accepted by participants.
In this section, we discuss the considerations for emotional wellbeing modeling, and opportunities and limitations
in personal informatics systems using home IoT data.We then propose design implications for emotional wellbeing
management systems in home IoT contexts.

5.1 Emotional Wellbeing Modeling using Home IoT Data
Our findings showed that incorporating home IoT data significantly improved the model’s ability to explain
everyday emotional wellbeing risks, such as depression, anxiety, and stress. Additionally, home IoT data could
serve independently as a reliable predictor for emotional wellbeing risks. However, the results also revealed
considerable individual differences, indicating the importance of accounting for individual characteristics and
contexts when modeling emotional wellbeing with home IoT data.
The heterogeneity in individual-level data is known as distribution shifts [76], and is particularly relevant in

generalized models using leave-one-subject-out cross-validation. In such cases, mismatches between training and
testing distributions due to inter-individual differences can significantly undermine model generalizability. This
observation arises because the relationship between emotional states and actual behaviors is highly individualized.
The same behavior may reflect different emotional states across individuals, while similar emotional states may
be expressed through different behaviors. In other words, identical behavioral cues can carry opposite meanings,
shaped by one’s coping mechanisms, routines, or cultural contexts. As a result, models trained on aggregate data
may fail to capture these nuances, leading to reduced predictive accuracy when applied to unseen users. For
example, Adler et al. [4] highlighted the difficulty in generalizing passive sensing models due to inter-individual
heterogeneity, even when data are collected using similar devices and protocols.
From a modeling perspective, this interpersonal variation can be described as a conditional shift, where the

relationship between input features 𝑋 (e.g., refrigerator usage) and outcomes 𝑌 (e.g., stress) varies depending on
individual traits, time, or environmental context [28]. In our study, for example, P16 reported that when feeling
depressed, she tended to withdraw from most activities and experienced a loss of appetite, which led to decreased
refrigerator usage. In contrast, P17 coped with stress by eating more, resulting in increased refrigerator usage
during stressful periods. These contrasting patterns demonstrate how the same feature 𝑋 can correlate with 𝑌 in
opposite ways across individuals. This highlights the importance of individual contexts and behavioral patterns
in models to better account for such variability.

Our findings highlighted that building generalized emotional wellbeing models requires addressing distribution
differences between training and testing data. Leveraging contextual information, such as time of day or user-
specific traits, could allow for deeper understanding of the factors influencing emotional wellbeing [113] (e.g.,
conditional independence). Additionally, we can use domain adaptation or personalization techniques. Domain
adaptation could help mitigate or account for these differences by aligning the distributions of the source
domain (training data) and the target domain (testing data), thereby enhancing the model’s performance as
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demonstrated in human activity recognition [16]. Personalization enables the model to reflect the user’s unique
data distribution better and to improve detection accuracy by incorporating a subset of target user data into the
training process [62].

5.2 Challenges and Opportunities in Personal Informatics Systems for Emotional Wellbeing using
Home IoT Data

We explored users’ experiences with a PI system using home IoT data, and derived key barriers to its effective
use from two perspectives: (1) nuances in reflecting on the data, and (2) privacy concerns.
Reflections on data. Interpreting smart home sensor data involves reconstructing behaviors, speculating on

and reflecting over data, and contextualizing trends [50]. This sensemaking requires articulation work, such as
reasoning about how the home is organized, its routine, and the activities taking place [99, 103]. While prior
work emphasized the complexity of this sensemaking process, interestingly, most participants in our study
found the reflection process relatively intuitive, possibly due to the simplicity of their living contexts (i.e., living
alone in studios or one-bedroom apartments), which helped reduce contextual complexity. They interpreted the
data by drawing on situational contexts (e.g., usage scenarios) and behavioral traits (e.g., habitual patterns) and
often combining multiple data sources when faced with ambiguity. While participants generally benefited from
leveraging home IoT data during the reflection, they also faced challenges due to the following reasons.

Data ambiguity. Home IoT sensor data can often be interpreted in multiple ways due to the limited contextual
details. For example, an increase in the value of a main door contact sensor might indicate someone briefly
opening the door for ventilation, rather than leaving the home. These data are typically raw and abstract, with
limited contextual enrichment, which complicates the accurate interpretation of tracked behaviors. To enhance
data interpretability, it is important to provide fine-grained, semantically enriched context recognition (e.g., time
of day or contextual annotations) and context-aware data filtering. These enhancements can offer users clearer
insights into their tracked behaviors and facilitate more meaningful reflections.

Uncertainty in Exploring Relationships. Some participants noted the challenge of confounding factors, as mental
health is influenced by many variables not captured by the system, such as work stress, social relationships, or
physical health. Without accounting for these, the system may present spurious correlations, which are statistical
associations that do not reflect meaningful or causal relationships. To mitigate this, future systems could adopt
multimodal sensor fusion, shifting from isolated, low-level device signals to richer semantic interpretations by
clustering related activities and analyzing their temporal sequences [34].
Lack of mental models. Based on our observations, we found that some participants found certain data types,

such as environmental factors, difficult to interpret, limiting their ability to reflect and make actionable changes.
For example, while P14 easily connected sleep with stress, she struggled to relate humidity to stress. This difference
may arise from how closely data aligns with personal experiences. Sleep is tangible and part of daily routines,
whereas humidity feels abstract and less connected to direct actions, resulting in a weak and incomplete mental
model. One interesting observation to note is that these weak mental models can be explained through the lens of
Construal Level Theory (CLT) [101]. According to CLT, people perceive and process information at different levels
of abstraction based on their psychological distance. Data such as sleep patterns, closely tied to participants’ daily
routines, are perceived as psychologically close and processed concretely, making it easier to connect to emotional
wellbeing. In contrast, environmental factors like humidity, perceived as psychologically distant, are processed
more abstractly. Participants struggled to relate such data to their emotional wellbeing or derive actionable
insights because the connection between the data and their personal experiences was not immediately obvious.
This underscores the need for systems that make abstract data more relatable by connecting it to users’ daily
experiences, such as explaining how humidity affects mood or offering specific recommendations. Bridging the
gap between abstract data and its implications can help users process and apply insights for emotional wellbeing.
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Privacy concerns. Privacy has long been a central consideration in the design of PI systems. In our study,
participants’ initial concerns about data collection were alleviated after engaging with the data visualization tool
for self-reflection. As they gained a clearer understanding of how the data was collected and used, many reported
feeling more comfortable with the system. Several factors contributed to this shift in perception.

First, initial privacy concerns stemmed from participants’ limited understanding of the data collection process
and how the system would represent the collected data. Before using the system, they were uncertain about
how their personal information would be handled. However, after reviewing the actual data and seeing how it
was abstracted and utilized, their concerns lessened. This transparency alleviated anxiety by clarifying that the
system focused on identifying patterns rather than collecting specific, personally invasive details.
Second, participants recognized that the benefits of data collection, such as improvements in emotional

wellbeing, outweighed perceived privacy risks. This shift aligns with prior research showing that users often
weigh the risks against the benefits of sensor-driven technologies [52]. As participants observed how the system
supported their emotional wellbeing, they became more accepting, possibly due to the privacy-utility trade-off [2].
Many participants noted that the advantages of using the system for mental health management overshadowed
their initial concerns, leading to increased acceptance of data collection.
Third, privacy concerns naturally diminished as participants grew more familiar with the technology and its

benefits. Initially, there was uncertainty about how sensor data collection might infringe on privacy. However,
after living with the sensors for a month and interacting with the system, their concerns were significantly
reduced. This reflects the privacy hump hypothesis, which suggests that initial resistance to intrusive technologies
fades as users become accustomed to them and understand their value [37]. Similarly, prior work on smart home
data privacy [7] suggests that repeated exposure to smart home devices, particularly those with wider market
penetration, can lead users to gradually adjust their privacy expectations. As participants in our study became
familiar with the IoT sensors and realized that their fears about privacy violations were not realized, their
perceived risks diminished. Over time, data practices that were initially seen as unacceptable gradually become
normalized, resulting in less concern about data privacy.

5.3 Design Implications
Our study highlighted the potential of home IoT data in supporting emotional wellbeing. Building on these
findings, we proposed practical design guidelines for developing user-centered and personalized self-reflection
tools for emotional wellbeing. These guidelines focus on supporting diverse home environments and individualized
routines in IoT-based tracking, helping users interpret contextual information for meaningful reflection, and
improving privacy acceptability through transparency and user control.

Design implication 1: Home IoT self-tracking should account for home-specific variability and individual differences.
Our system collected home IoT data to support users in reflecting on their emotional wellbeing. We observed
substantial variation not only in participants’ domestic routines, but also in how those routines were related
to their emotional wellbeing. These differences stemmed from various factors, including home environment
characteristics like spatial layout and daily activity patterns [35]. To be effective, tracking systems should account
for both the diversity of living situations and individual lifestyles.
Prior work has addressed home-specific variability by introducing personalized bootstrapping techniques.

These methods begin with passive data collection and incorporate user feedback through active learning to tailor
the system to individuals’ homes [34]. Another approach involves developing layout-agnostic models that translate
sensor events into natural language descriptions, thereby reducing reliance on physical configuration [98]. These
approaches point to the importance of supporting both early-stage personalization and layout-independent
interpretation in emotional wellbeing tracking, enabling systems to better adapt across varied home settings.
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Individual differences in behavior and tracking preferences also call for user-driven approaches. In the context
of chronic condition management, goal-directed self-tracking systems allow users to define what to monitor
based on their personal goals, improving relevance and engagement [90, 92]. Another promising direction is
involving users in configuring their own tracking logic based on their daily routines, as seen in systems like
Routinoscope [111]. Building on this, future emotional wellbeing tracking systems could incorporate interactive
feedback mechanisms to support personalized, user-centered tracking experiences.
Design implication 2: PI systems should actively support users in data contextualization for reflection.
Participants attempted to understand their behaviors captured via multiple home IoT sensors by conducting

contextualization, adding relevant context to the data to aid sensemaking. For example, some participants
interpreted sudden increases in home IoT sensor events as signals indicating the periods of extended time spent
at home, which helped them better understand their emotional experiences during those periods. However, when
they had difficulty interpreting or noticing such cues, their reflection tended to be shallow or fragmented. Prior
studies have also highlighted how contextual cues (e.g., time, location, and activity) could improve the depth of
self-reflection [78, 79]. Building on this, PI systems should do more than just display individual time-series sensor
data. They should also assist users in providing contextual cues and further integrating them meaningfully into
their reflection process. Without such support, users might miss important connections between their behaviors
and emotional states.
We suggest two complementary strategies to better support data contextualization for self-reflection. First,

temporal interaction can be used to guide users in structuring their reflection. While our system allowed users to
filter and examine time-series data, PI systems could build on this by enabling dynamic comparisons between
time periods [44], letting users tag time segments they find meaningful [40], or automatically identifying unique
time segments deviating from typical behavioral patterns. These tagged segments could then be used to generate
personalized insights that highlight recurring emotional patterns [10]. Second, PI systems can support recall by
prompting users to revisit specific contextual memories. For instance, Echo [38] encourages reflection through
repeated engagement with past journal entries. ReflectiveDiary [86] uses passively collected data (e.g., location,
call logs) to create short quizzes that nudge users to remember people or places tied to prior experiences. By
helping users reconstruct the context surrounding past events, these systems foster deeper understanding of
emotional experiences over time.

Design implication 3: Granular control and explaining benefits and risks help users improve privacy acceptability.
Consistent with prior research [1, 115], participants in our study expressed generally low privacy concern
regarding IoT data. However, interacting with a data visualization tool appeared to enhance data acceptability
by enabling users to explore and interpret the data more directly. We observed that the major factor associated
with increased acceptability was perceived personal benefits, such as the association between sleep data and
emotional wellbeing. Furthermore, although some data types with low granularity, such as indoor movement,
were perceived as intrusive, we found that perceived benefits could potentially offset such concerns.

Building on these findings, we suggest two design strategies to improve privacy acceptability. First, systems
should help users understand the concrete benefits of data collection. When users perceive clear personal benefits,
they are generally more willing to permit both the collection and sharing of their data [115]. At the same time,
highlighting benefits should not come at the cost of obscuring potential risks. Prior work shows that even
technically literate users often fail to recognize the privacy risks associated with IoT-based monitoring [12].
Furthermore, users’ willingness to disclose personal health data is shaped by their sense of control, with perceived
risks and benefits acting as key mediating factors in this relationship [9]. For this reason, explanations should
aim to strike a balance by clarifying what users gain while also being transparent about what they are giving up.
Second, systems should make the scope and granularity of data collection explicit. Participants in our study

reported feeling less concerned about data collection after reviewing the actual data and concluding it was not
personally identifiable. This underscores the importance of data legibility and interpretability in mitigating
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privacy concerns. When users understand what types of data are collected and at what level of detail, they
are better positioned to assess potential privacy implications. Beyond clearly presenting data granularity and
scope, prior work has shown that users prefer fine-grained privacy control, particularly in health contexts [15].
Providing adjustable levels of granularity can also improve interpretability, enabling users to better align the data
with their personal goals and privacy expectations [70].

6 Limitations
Our study has several limitations. First, the four-week deployment with 20 single-person households limits
the generalizability of the findings. Future long-term studies across more diverse household types are needed
to better understand lifestyle patterns and their influence on emotional wellbeing. Second, while we selected
sensors based on appliance ownership, this does not guarantee an accurate reflection of actual usage; future
work should explore more personalized activity tracking. Third, we did not consider multi-user households,
where sensor data may reflect multiple individuals’ behaviors, complicating interpretation. Fourth, while most
participants lived in studio apartments, variations in living space and layout were not explicitly controlled, which
could have influenced some measures such as motion-based indoor movement. Lastly, although we identified
quantitative correlations between IoT data and emotional wellbeing, these do not imply causality. We conducted
follow-up interviews to provide context, but further methods are needed to distinguish meaningful from spurious
associations.

7 Conclusion
This study explored the potential of home IoT data as a complementary source for tracking emotional wellbeing,
alongside mobile and wearable data. Through a four-week field study with 20 participants in the wild, we
demonstrated that home IoT data generates valuable insights into individuals’ domestic routines and their
associations with emotional wellbeing. Our quantitative analysis revealed that incorporating home IoT data
captured major domestic behaviors associated with emotional wellbeing compared to relying solely on mobile and
wearable data. However, we observed significant interpersonal differences in behavioral patterns, underscoring
the need for personalized approaches to interpreting sensor data in relation to emotional wellbeing. Furthermore,
a simple data visualization tool was used to help participants reflect on their behavioral data. The qualitative
findings highlighted that participants found home IoT data fairly intuitive and insightful for understanding their
relationships with emotional wellbeing. By contextualizing the data within their daily routines, participants
were able to identify personalized behavioral markers and gain meaningful reflections on their emotional states.
Interestingly, engaging with their own data also led to a positive shift in privacy perceptions, suggesting that
transparency and user involvement in data interpretation can mitigate privacy concerns. This study contributes
to the growing field of sensor-enabled mental healthcare by offering empirical evidence on the value of home IoT
data, user perceptions of behavioral markers, and privacy considerations.
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Appendix

A Preliminary Survey Results and Collected Sensor Data
This section presents the preliminary survey results used to guide sensor selection (Table 6) and details of the
collected sensor data (Table 7).

Table 6. Number of single-person households owning each home appliance

Category Appliances Number of respondents

Kitchen Appliances

Refrigerator 30
Microwave 29
Air fryer 16
Rice cooker 13
Water purifier 7
Stove 2
Dishwasher 2
Oven 1

Laundry Appliances Washing machine 29
Clothes dryer 1

Cleaning Appliances Vacuum cleaner 25
Air purifier 5

Entertainment Appliances

Television 20
Gaming console 1
Projector 1
Smart speaker 1

Table 7. Descriptions of collected sensor data

Device Type Sensor Type Data Type Description

Home IoT Sensor

Vibration Sensor

Refrigerator Number of refrigerator doors opened per day
Vacuum Cleaner Number of vacuum cleaner vibrated per day
Washing Machine Number of washing machine vibrated per day
Chair Motion Number of chair movements detected per day

Contact Sensor Microwave Number of microwave doors opened per day
Main Door Number of door open/close per day

Pressure-based sleep sensor Sleep Hours of sleep per day
Motion Sensor Indoor Motion Number of motion detected per day
Temperature & Humidity Sensor Temperature & Humidity Average temperature & humidity of the daily home environment
Light Sensor Light Average light (lx) of the daily home environment

Smartphone Calls Call duration per day
Messages Number of messages sent and received per day

Wearable Device Steps Daily step counts

B Supplementary Multilevel Regression and Temporal Analyses
This section reports detailed multilevel regression results examining the associations between sensor-derived
features and emotional wellbeing indicators, as shown in Tables 8, 9, 10, 11, and 12. Reduced sleep duration showed
a strong association with multiple emotional wellbeing indicators, including depression (𝛽 = -0.21, 𝑝 = 0.008),
anxiety (𝛽 = -0.33, 𝑝 < 0.001), and stress (𝛽 = -0.12, 𝑝= 0.020). Similarly, increased sleep duration was associated
with positive emotional valence (𝛽 = 0.11, 𝑝 = 0.030). Higher indoor temperatures were also significantly linked
to increased levels of depression (𝛽 = 0.77, 𝑝 < 0.001) and anxiety (𝛽 = 0.74, 𝑝 < 0.001). Notably, specific behavioral
indicators such as an increase in washing machine usage showed a connection to depression (𝛽 = 0.22, 𝑝 = 0.049)
and high emotional arousal (𝛽 = 0.17, 𝑝 = 0.007), while a higher frequency of main door open-close events was
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Fig. 10. Frequency of domestic activities showing strong correlations with emotional wellbeing risk across participants

linked to stress (𝛽 = 0.10, 𝑝 = 0.007). Additionally, across five emotional wellbeing indicators (i.e., depression,
anxiety, stress, emotional valence, and emotional arousal), the conditional 𝑅2 values consistently exceeded the
marginal 𝑅2, demonstrating the importance of accounting for individual differences.
In addition, we observed substantial variability in individual-level correlations across participants (Figure 7),

which summarizes the top three associations between behavioral patterns and emotional wellbeing risk for each
user. To further explore these patterns, we visualized the most frequently occurring indicators across individuals
(Figure 10). Temperature emerged as the most frequently correlated feature (N = 12), likely influenced by seasonal
variations during early summer when data collection took place. This was followed by chair movements (N = 8),
indoor movement counts, and humidity (N = 6). These findings highlight that even features without statistical
significance at the group level may hold considerable relevance when analyzed at the individual level.
Beyond individual-level correlations, we also examined temporal dynamics in emotional wellbeing using

Generalized Estimating Equations (GEE), which account for correlations among repeated measures. We specified
an exchangeable working correlation structure and an identity link function to model participants’ emotional
wellbeing risk scores (depression, anxiety, stress, emotional valence, and emotional arousal) over time, with
week as the primary predictor. Each participant provided daily self-reported survey responses over four weeks,
resulting in repeated measurements clustered within individuals, with participant ID treated as the clustering
variable. The GEE analysis did not reveal statistically significant temporal effects.
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Table 8. Results of multilevel regression model (Depression)

Depression
Independent
Variables Estimate (𝛽) Std. Error (SE) Odds Ratio (OR) 95% CI 𝑝

Call 0.00 0.00 1.00 1.00 – 1.00 0.378
Message 0.01 0.05 1.01 0.91 – 1.12 0.845
Step 0.00 0.00 1.00 1.00 – 1.00 0.574
Brightness -0.01 0.01 0.99 0.98 – 1.00 0.183
Temperature 0.77 0.20 2.17 1.45 – 3.24 <0.001 ***
Humidity -0.23 0.37 0.79 0.39 – 1.63 0.529
Sleep -0.21 0.08 0.81 0.70 – 0.95 0.008 **
Cleaner 0.08 0.04 1.09 1.00 – 1.18 0.060
Washer 0.22 0.11 1.24 1.00 – 1.54 0.049 *
Fridge 0.02 0.04 1.02 0.94 – 1.11 0.600
Microwave -0.06 0.12 0.94 0.74 – 1.19 0.602
Movement 0.00 0.00 1.00 0.99 – 1.00 0.674
Chair -0.01 0.01 0.99 0.97 – 1.01 0.262
Door 0.01 0.07 1.01 0.88 – 1.16 0.877

Table 9. Results of multilevel regression model (Anxiety)

Anxiety
Independent
Variables Estimate (𝛽) Std. Error (SE) Odds Ratio (OR) 95% CI 𝑝

Call 0.00 0.00 1.00 1.00 – 1.00 0.439
Message 0.01 0.06 1.01 0.91 – 1.13 0.816
Step 0.00 0.00 1.00 1.00 – 1.00 0.608
Brightness 0.00 0.01 1.00 0.99 – 1.01 0.541
Temperature 0.74 0.20 2.10 1.41 – 3.13 <0.001 ***
Humidity -0.23 0.37 0.80 0.39 – 1.64 0.536
Sleep -0.33 0.08 0.72 0.61 – 0.85 <0.001 ***
Cleaner 0.07 0.05 1.08 0.98 – 1.18 0.111
Washer 0.03 0.12 1.03 0.81 – 1.30 0.809
Fridge 0.07 0.04 1.07 0.99 – 1.16 0.104
Microwave -0.01 0.12 0.99 0.79 – 1.25 0.961
Movement 0.00 0.00 1.00 0.99 – 1.01 0.921
Chair 0.00 0.00 1.00 0.99 – 1.01 0.659
Door -0.10 0.08 0.91 0.78 – 1.05 0.195
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Table 10. Results of multilevel regression model (Stress)

Stress
Independent
Variables Estimate (𝛽) Std. Error (SE) Odds Ratio (OR) 95% CI 𝑝

Call 0.00 0.00 1.00 1.00 – 1.00 0.624
Message 0.08 0.04 1.08 1.00 – 1.16 0.040 *
Step 0.00 0.00 1.00 1.00 – 1.00 0.126
Brightness 0.00 0.00 1.00 1.00 – 1.01 0.483
Temperature 0.23 0.13 1.26 0.99 – 1.61 0.065
Humidity -0.17 0.21 0.85 0.56 – 1.28 0.431
Sleep -0.12 0.05 0.89 0.81 – 0.98 0.020 *
Cleaner 0.02 0.03 1.02 0.96 – 1.08 0.555
Washer 0.09 0.06 1.10 0.97 – 1.25 0.144
Fridge -0.04 0.03 0.96 0.91 – 1.01 0.100
Microwave 0.00 0.07 1.00 0.87 – 1.14 0.986
Movement 0.00 0.00 1.00 1.00 – 1.00 0.449
Chair 0.00 0.00 1.00 1.00 – 1.00 0.129
Door 0.10 0.04 1.11 1.03 – 1.20 0.007 **

Table 11. Results of multilevel regression model (Emotional Valence)

Emotional Valence
Independent
Variables Estimate (𝛽) Std. Error (SE) Odds Ratio (OR) 95% CI 𝑝

Call 0.00 0.00 1.00 1.00 – 1.00 0.507
Message 0.05 0.04 1.06 0.97 – 1.15 0.194
Step 0.00 0.00 1.00 1.00 – 1.00 0.581
Brightness 0.01 0.00 1.01 1.00 – 1.01 0.146
Temperature -0.16 0.13 0.86 0.66 – 1.11 0.232
Humidity 0.26 0.22 1.30 0.84 – 2.01 0.245
Sleep 0.11 0.05 1.11 1.01 – 1.23 0.030 *
Cleaner -0.05 0.03 0.95 0.89 – 1.01 0.120
Washer 0.04 0.08 1.04 0.90 – 1.22 0.583
Fridge 0.01 0.03 1.01 0.95 – 1.06 0.781
Microwave -0.08 0.07 0.93 0.81 – 1.06 0.263
Movement 0.00 0.00 1.00 1.00 – 1.00 0.723
Chair 0.00 0.00 1.00 0.99 – 1.00 0.176
Door -0.01 0.04 0.99 0.91 – 1.07 0.755
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Table 12. Results of multilevel regression model (Emotional Arousal)

Emotional Arousal
Independent
Variables Estimate (𝛽) Std. Error (SE) Odds Ratio (OR) 95% CI 𝑝

Call 0.00 0.00 1.00 1.00 – 1.00 0.979
Message 0.02 0.04 1.02 0.95 – 1.09 0.645
Step 0.00 0.00 1.00 1.00 – 1.00 0.072
Brightness 0.00 0.00 1.00 1.00 – 1.01 0.678
Temperature -0.19 0.13 0.83 0.65 – 1.06 0.141
Humidity -0.08 0.21 0.93 0.61 – 1.41 0.721
Sleep -0.03 0.05 0.97 0.88 – 1.07 0.558
Cleaner -0.02 0.02 0.98 0.95 – 1.02 0.334
Washer 0.17 0.06 1.18 1.05 – 1.34 0.007 **
Fridge -0.03 0.03 0.97 0.92 – 1.03 0.332
Microwave -0.02 0.07 0.98 0.86 – 1.13 0.815
Movement 0.00 0.00 1.00 0.99 – 1.00 0.165
Chair 0.00 0.00 1.00 1.00 – 1.00 0.550
Door 0.02 0.04 1.02 0.94 – 1.10 0.625

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 96. Publication date: September 2025.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Tracking Home IoT Data for Emotional Wellbeing
	2.2 Supporting Emotional Wellbeing Reflection with Personal Informatics
	2.3 Privacy Concerns in Home IoT Data Collection

	3 Methods
	3.1 Data Selection Criteria
	3.2 In-the-Wild Data Collection
	3.3 Post-collection Data Reflection
	3.4 Data Analysis Methods

	4 Results
	4.1 RQ1. Exploring Home IoT Data Associated with Everyday Emotional Wellbeing
	4.2 RQ2. User Perceptions of Behavioral Indicators for Emotional Wellbeing Self-Reflection
	4.3 RQ3. Privacy Considerations of Home IoT Data for Self-Tracking Emotional Wellbeing

	5 Discussion
	5.1 Emotional Wellbeing Modeling using Home IoT Data
	5.2 Challenges and Opportunities in Personal Informatics Systems for Emotional Wellbeing using Home IoT Data
	5.3 Design Implications

	6 Limitations
	7 Conclusion
	Acknowledgments
	References
	A Preliminary Survey Results and Collected Sensor Data
	B Supplementary Multilevel Regression and Temporal Analyses

