
유비쿼터스 환경에서의 Usable Security & Privacy 연구 동향: 멀티모달 센싱 시대의 사용자 보안/프라이버시를 고려한 인간 중심 시스템 설계

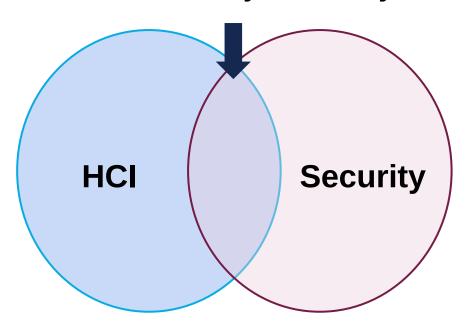
이현수 KCC 2025 신진연구자 세션 7월 3일 ICC 제주 401B호

목차

- 1 연구분야 소개
- 2 유비쿼터스 환경에서 사용자 보안/프라이버시 이슈
- 3 연구 사례 및 동향
- 4 사용자 보안과 프라이버시를 고려한 인간 중심 시스템 설계

Research Area

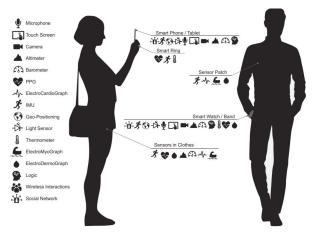
Research Area

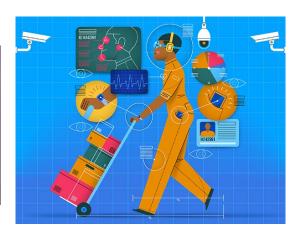


Ubiquitous computing

"Ubiquitous computing, also known as pervasive computing, refers to the concept of embedding computing capabilities into everyday objects and environments, making technology seamlessly available and accessible anytime and anywhere."

Research Area


Usable Security & Privacy


"Give end-users security controls they can understand and privacy they can control for the dynamic, pervasive computing environments of the future."

Computing Research Association 2003

Security and Privacy Issues in Ubiquitous Environments

Personal sensing

Smarthome sensing

Workplace sensing

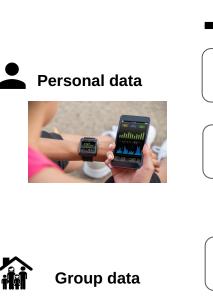
Security and Privacy Issues in Ubiquitous Environments

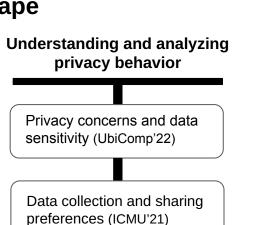
Personal Profiling & Behavioral Prediction

- Accelerometer data revealing participants' current activities
- Gait recognition data revealing participants' identity

Discrimination & Stigmatization

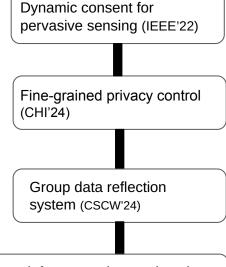
- Drawing health inferences from personal data
- Inaccurate or biased emotion detection algorithms leading to psychological and physical harms (e.g., AI Snake Oil)


^[1] Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. 2011. Activity recognition using cell phone accelerometers. ACM SigKDD Explorations Newsletter 12, 2 (2011)


^[2] Mohammad Omar Derawi, Claudia Nickel, Partice Bours, and Christoph Busch. 2010. Unobtrusive user-authentication on mobile phones using biometric gait recognition. IEEE (2010) [2] Statistics of Description of the Computation of Participants Particip

^[3] Skiljic A. The Status Quo of Health Data Inferences. International Association of Privacy Professionals: Privacy Perspectives

^[4] Martin Cooney, Sepideh Pashami, Anita Sant'Anna, Yuantao Fan, and Slawomir Nowaczyk. Pitfalls of Affective Computing: How can the automatic visual communication of emotions lead to harm, and what can be done to mitigate such risks. In Companion Proceedings of the The Web Conference 2018


Research landscape

OurData framework

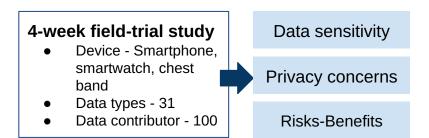
(Submitted to UbiComp'25)

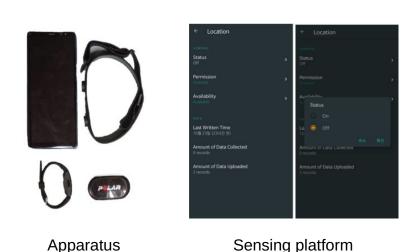
Proposing novel concepts

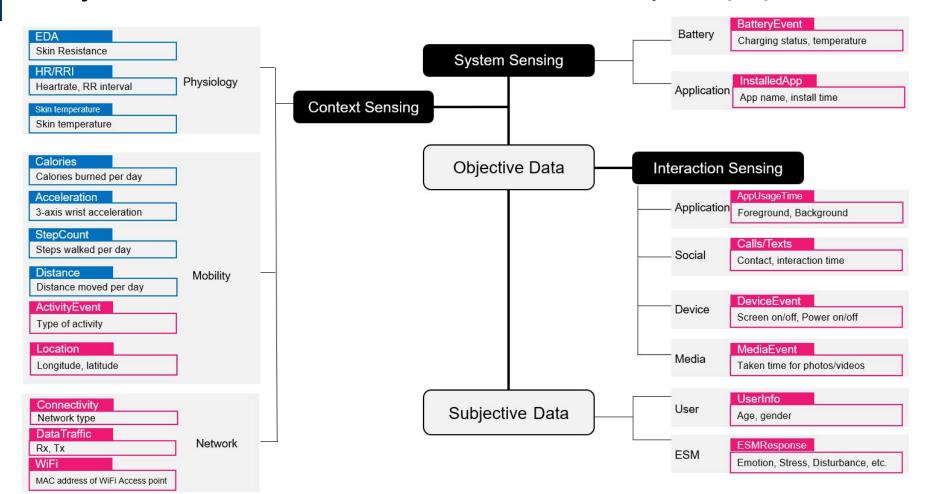
and systems

Research contribution

- End-to-end field trial
- User perception
- User-oriented system design


[Short-term] Establishing technical framework for group data and explore user perceptions and ethical considerations


[Long-term] Designing interactive technologies that surface data practices, enhance data literacy, and support both individual and collective privacy decisions in multi-user environments


Research goal

My research will continue to increase users' privacy awareness and provide secure user experience

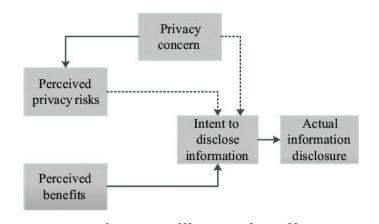
- (1) Collected 31 types of sensor data (N = 100, Four-week)
 - Collected 31 types of sensor data from 100 college students
 - Investigated users' general perception and data sensitivity toward personal data disclosure in multimodal sensing contexts
 - Quantitatively analyzed contributing factors toward users' behavioral patterns and privacy-decision making under multimodal sensor data collection (N = 26)

(2) Users' general motives and data sensitivity

- Collected 31 types of sensor data from 100 college students
- Investigated users' general perception and data sensitivity toward personal data disclosure in multimodal sensing contexts
- Quantitatively analyzed contributing factors toward users' behavioral patterns and privacy-decision making under multimodal sensor data collection (N = 26)

User perception survey (7-point Likert scale)

Motives	Financial compensation (M = 5.67)
Risk-Benefit Assessment	Personal data protection (M = 6.40)
	Potential benefits (M = 4.68)
Privacy concerns	Behavioral intention (M = 5.15)
	Secondary use (M = 4.50)
Trust	Trust in collected data types (M = 6.16)


<u>Data sensitivity survey (7-point Likert scale)</u>

Calls/texts - App usage - App notification - Camera- GPS (no pre-post statistical difference)

- (3) Factors associated with users' privacy decision-making
 - Collected 31 types of sensor data from 100 college students
 - Investigated users' general perception and data sensitivity toward personal data disclosure in multimodal sensing contexts
 - Quantitatively analyzed contributing factors toward users' behavioral patterns and privacy-decision making under multimodal sensor data collection (N = 26)

Types of privacy concerns

- Routine identification Judgment
 - Surveillance Data misuse

Privacy-Utility Trade-Off

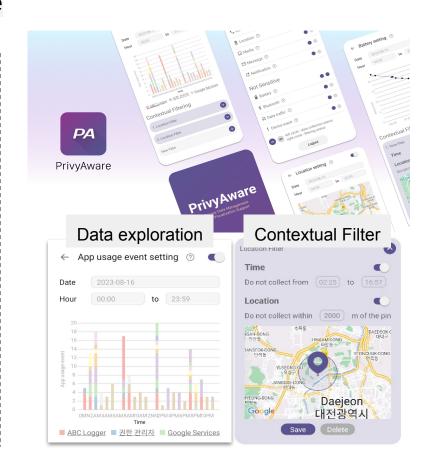
Fine-Grained Privacy Control in Sensor-Driven Research (ACM ICMU'21, IEEE Pervasive Computing'22)

"Dynamic consent" in pervasive sensing studies

Definition:

Request for medical check-up data

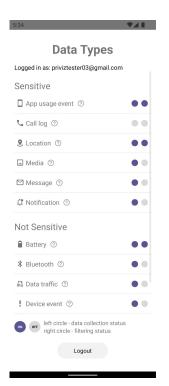
- 1. **Flexible data consent** (originated from biomedical field) → Patient participation & power to patients
- 2. **Narrow and specific consent** → engage/withdraw from a new research or give/revoke access to a certain data item


Do you agree to share your medical examination data for chronic disease research? Do you agree to share your lifelog data for developing new dementia medication?

Digital platform

Request for lifelog data

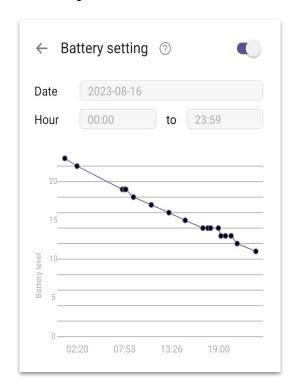
User-Friendly Privacy Support in Multimodal Sensing (CHI'24)

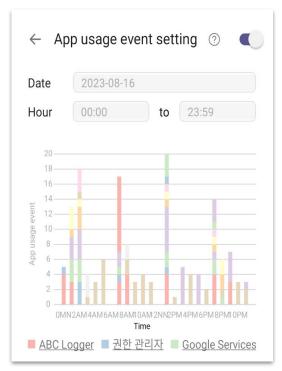

- (1) Design and implementation of PriviAware
 - Designed and implemented
 PriviAware a mobile intervention
 app for promoting participants'
 proactive data collection consent and
 privacy management
 - Performed user study on how PriviAware's different intervention conditions have a different effect on participants' perceived level of privacy concerns and awareness

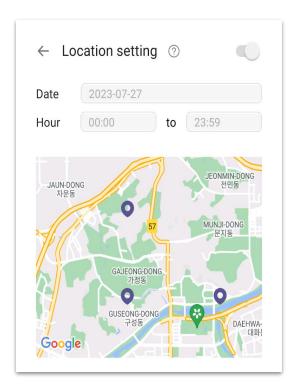
Final System Design

Main page

Help Dialog Messages

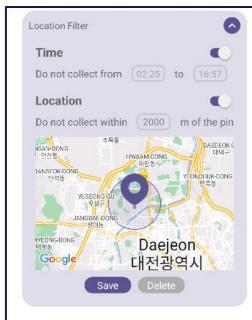

App usage event 무엇을 수집하나요? 설치한 앱 리스트 및 앱 사용 시간 기록 Who can access? Researchers from ICLab, KAIST (hyunsoo.lee@kse.kaist.ac.kr)


Collecting Status



Final System Design

• Key Feature #1. Data exploration: Data visualization of collected data

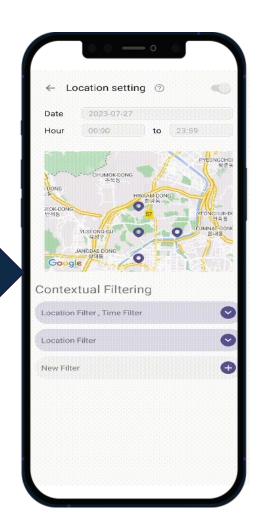

Numeric data view

Categorical data view

Location data view

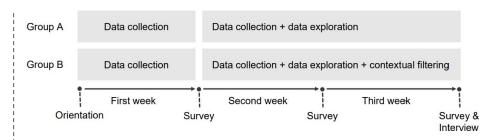
Final system design

Key Feature #2. Data control: Contextual filtering


Contextual filtering: Disable data collection

1. Time Filter

 By setting the time range (start-end), users can apply time filter


2. Location Filter

 By moving the pin on map, users can select center of filtering area

User-Friendly Privacy Support in Multimodal Sensing (CHI'24)

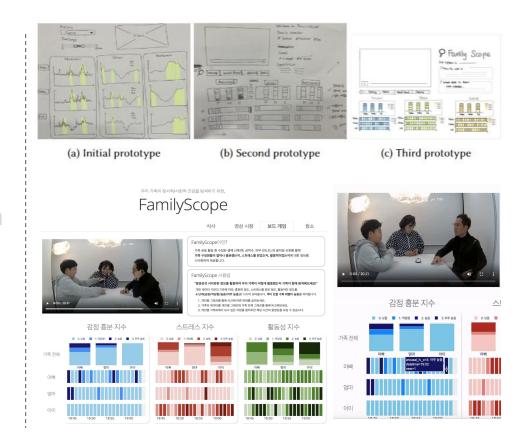
- (2) User study on PriviAware system design (N = 60, Three-week)
- Designed and implemented
 PriviAware a mobile intervention app for promoting participants' proactive data collection consent and privacy management
- Performed user study on how PriviAware's different intervention conditions have a different effect on participants' perceived level of privacy concerns and awareness

Quantitative analysis

- Perceived usability of PriviAware features (SUS Scale)
 - Data exploration: 73.3
 - Contextual filter: 73.1
- Decreased privacy concern level for both groups (Mixed-Anova)
 - 1st week vs. 2nd week
 - 1st week vs. 3rd week

User-Friendly Privacy Support in Multimodal Sensing (CHI'24)

- (2) User study on PriviAware system design (N = 60, Three-week)
- Designed and implemented
 PriviAware a mobile intervention
 app for promoting participants'
 proactive data collection consent
 and privacy management
- Performed user study on how PriviAware's different intervention conditions have a different effect on participants' perceived level of privacy concerns and awareness


Qualitative analysis (N = 20)

- 1) Behavioral pattern
 - Data exploration → Contextual filter →
 Daily check-up on personal data collection
 & management
- Contextual filtering configuration:
 - Regular filtering for daily contexts
 - One-time filtering for special occasions
- 2) Decrease in privacy concerns
 - Increased data literacy
 - Increased trust in data handling

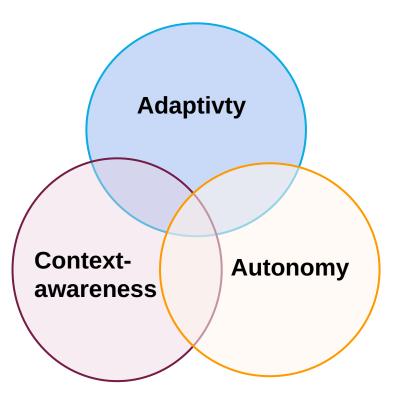
Group data privacy in multimodal sensing environment (cscw'24)

(1) FamilyScope system design

- Designed and implemented
 FamilyScope sensor data
 collection and exploration tool for family's emotional health and
 wellbeing at smart home
- User study on FamilyScope system design
 - Data collection
 - Interpersonal data privacy concerns
 - Design requirements

Group data privacy in multimodal sensing environment (cscw'24)

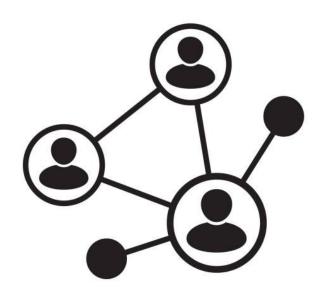
(2) User study on FamilyScope system design (N = 30, 10 families)


- Designed and implemented
 FamilyScope sensor data
 collection and exploration tool for family's emotional health and
 wellbeing at smart home
- User study on FamilyScope system design
 - Data collection
 - Interpersonal data privacy concerns
 - Design requirements

User perceptions & Privacy concerns

Positive	Family data = "common asset"
Negative	Sensor data literacy
	Data access/grant issue
	Data boundary

#1. Security & Privacy is not a static setting—it's a dynamic, context-sensitive challenge


Implication

 Permission toggles alone are insufficient → need for context-aware, adaptive interfaces

Research directions

 Real-time consent flows based on user context

#2. Security & Privacy decisions often involve multiple users—data is relational

Implication

 Shared data (e.g., family, teams) demands multi-user privacy design patterns

Research directions

- Interfaces for negotiating access across social boundaries
- Sociotechnical components for coordinating shared privacy preferences
- Tools for managing group-level data conflicts

#3. Transparency and controllability are essential for building trust

Implication

 Sensor- or AI-driven systems must visualize invisible data flows and support user agency

Research directions

- Understandable visualizations of sensed data and system inference
- Feedback loops combining data tracking with actionable controls

#4. Security & Privacy design should shift from protection to participation

Implication

 Security & Privacy behavior is not just about risk avoidance, but about user empowerment and active engagement

Research directions

- Participatory interfaces that support user-driven data decisions
- Lightweight, usable interaction models that require minimal cognitive effort

유비쿼터스 환경에서의 Usable Security & Privacy 연구 동향: 멀티모달 센싱 시대의 사용자 보안/프라이버시를 고려한 인간 중심 시스템 설계

이현수 KCC 2025 신진연구자 세션 7월 3일 ICC 제주 401B호